Author:
Bryłka Karolina,Alverson Andrew J.,Pickering Rebecca A.,Richoz Sylvain,Conley Daniel J.
Abstract
AbstractMolecular clocks estimate that diatom microalgae, one of Earth’s foremost primary producers, originated near the Triassic–Jurassic boundary (200 Ma), which is close in age to the earliest, generally accepted diatom fossils of the genus Pyxidicula. During an extensive search for Jurassic diatoms from twenty-five sites worldwide, three sites yielded microfossils initially recognized as diatoms. After applying stringent safeguards and evaluation criteria, however, the fossils found at each of the three sites were rejected as new diatom records. This led us to systematically reexamine published evidence in support of Lower- and Middle-Jurassic Pyxidicula fossils. Although Pyxidicula resembles some extant radial centric diatoms and has character states that may have been similar to those of ancestral diatoms, we describe numerous sources of uncertainty regarding the reliability of these records. We conclude that the Lower Jurassic Pyxidicula fossils were most likely calcareous nannofossils, whereas the Middle Jurassic Pyxidicula species has been reassigned to the Lower Cretaceous and is likely a testate amoeba, not a diatom. Excluding the Pyxidicula fossils widens the gap between the estimated time of origin and the oldest abundant fossil diatom record to 75 million years. This study underscores the difficulties in discovering and validating ancient microfossils.
Funder
National Science Foundation Division of Environmental Biology
European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme
Knut and Alice Wallenberg Foundation
Lund University
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献