Addressing the issue of surface mechanisms and competitive effects in Cr(VI) reductive-adsorption on tin-hydroxyapatite in the presence of co-ions

Author:

Avola TizianaORCID,Campisi SebastianoORCID,Polito Laura,Arici Silvia,Ferruti Ludovica,Gervasini AntonellaORCID

Abstract

AbstractOur group recently proposed an innovative sustainable reductant-adsorbent material, tin(II)-hydroxyapatite (Sn/HAP, ca. 10 wt% Sn) for the interfacial Cr(VI) reductive adsorption process. In this study, Cr(VI) removal capacity was evaluated in multi-component solutions containing representative background ions (i.e., CaCl2, Ca(NO3)2, MgSO4, Na2SO4, Fe(NO3)3, AlCl3, Zn(NO3)2, or Mn(NO3)2). Sn/HAP was able to reduce Cr(VI) with complete Cr3+ adsorption on HAP surface, except in the presence of Fe3+ and Al3+ ions. Some metal ions co-existing in solution, such as Fe3+, Al3+, Zn2+, and Mn2+, were also adsorbed on HAP surface. Reuse experiments of the Sn/HAP sample, up to 7 runs, resulted in a total amount of reduced Cr(VI) of ca. 15–18 mg g−1. Fast kinetics of Cr(VI) reductive adsorption at 25 °C in a multi-metal component solution was observed. The pseudo-second order model was in excellent agreement with the experimental kinetic data, leading to a rate constant (k25°C) value of ca. 30 M−1 s−1. The collection of adsorption isotherms of Cr3+ and Fe3+, together with TEM–EDX analysis permitted the unveiling of competitive adsorption phenomena between metal ions. The obtained results demonstrate that Sn/HAP could be an efficient material for the removal of hexavalent chromium in aqueous solutions containing high concentrations of inorganic impurities.

Funder

Ministero dell'Università e della Ricerca

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3