A Physarum-inspired approach to the Euclidean Steiner tree problem

Author:

Hsu Sheryl,Massolo Fidel I. Schaposnik,Schaposnik Laura P.

Abstract

AbstractThis paper presents a novel biologically-inspired explore-and-fuse approach to solving a large array of problems. The inspiration comes from Physarum, a unicellular slime mold capable of solving the traveling salesman and Steiner tree problems. Besides exhibiting individual intelligence, Physarum can also share information with other Physarum organisms through fusion. These characteristics of Physarum imply that spawning many such organisms we can explore the problem space in parallel, each individual gathering information and forming partial solutions pertaining to a local region of the problem space. When the organisms meet, they fuse and share information, eventually forming one organism which has a global view of the problem and can apply its intelligence to find an overall solution to the problem. This approach can be seen as a “softer” method of divide and conquer. We demonstrate this novel approach, developing the Physarum Steiner Algorithm which is capable of finding feasible solutions to the Euclidean Steiner tree problem. This algorithm is of particular interest due to its resemblance to Physarum polycephalum, ability to leverage parallel processing, avoid obstacles, and operate on various shapes and topological surfaces including the rectilinear grid.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow-network adaptation and behavior in slime molds;Fungal Ecology;2024-04

2. Physarum-Inspired Enterprise Network Redesign;Lecture Notes in Networks and Systems;2024

3. A Very Large-Scale Integration Global Routing Optimization Model for Hybrid Physarum Bionetworks;Research Journal of Engineering and Technology;2023-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3