Larval rockfish growth and survival in response to anomalous ocean conditions

Author:

Fennie H. WilliamORCID,Grorud-Colvert Kirsten,Sponaugle Su

Abstract

AbstractUnderstanding how future ocean conditions will affect populations of marine species is integral to predicting how climate change will impact both ecosystem function and fisheries management. Fish population dynamics are driven by variable survival of the early life stages, which are highly sensitive to environmental conditions. As global warming generates extreme ocean conditions (i.e., marine heatwaves) we can gain insight into how larval fish growth and mortality will change in warmer conditions. The California Current Large Marine Ecosystem experienced anomalous ocean warming from 2014 to 2016, creating novel conditions. We examined the otolith microstructure of juveniles of the economically and ecologically important black rockfish (Sebastes melanops) collected from 2013 to 2019 to quantify the implications of changing ocean conditions on early growth and survival. Our results demonstrated that fish growth and development were positively related to temperature, but survival to settlement was not directly related to ocean conditions. Instead, settlement had a dome-shaped relationship with growth, suggesting an optimal growth window. Our results demonstrated that the dramatic change in water temperature caused by such extreme warm water anomalies increased black rockfish growth in the larval stage; however, without sufficient prey or with high predator abundance these extreme conditions contributed to reduced survival.

Funder

OSU | Oregon Sea Grant, Oregon State University

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3