Author:
He Zhengran,Zhang Ziyang,Bi Sheng,Chen Jihua,Li Dawen
Abstract
AbstractIn this study, we report an effective approach to tune the crystallization, microstructure and charge transport of solution-processed organic semiconductors by blending with a conjugated polymer additive poly(3-hexylthiophene) (P3HT). When 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) was used as a model semiconductor material to mix with different amount of P3HT, their intermolecular interactions led to distinctive TIPS pentacene film morphologies, including randomly-oriented crystal ribbons, elongated needles with enhanced long-range order, and grass-like curved microwires with interlinkages. Each type of morphology was found to further correlate to considerably different charge transport and device performance. As compared to pristine TIPS pentacene devices, bottom-gate, top-contact OTFTs with 2% in weight P3HT additive showed a 2-fold and 5-fold improvement of average field-effect mobility and performance consistency (defined as the ratio of average mobility to the standard deviation), respectively. The improvement in transistor electrical performance can be attributed to the combined effect of enhanced crystal orientation and uniformity, as well as increased areal coverage. This work can be applied beyond the particular example demonstrated in this study and to tune the charge transport of other small-molecule organic semiconductors in general.
Funder
Science and Technology Project of Liaoning Province
Publisher
Springer Science and Business Media LLC
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献