Author:
Fan Xiao,Chen Rui,Huang Haoge,Zhang Gangqiang,Zhou Shuai,Chen Xin,Zhao Yanbin,Diao Yinze,Pan Shengfa,Zhang Fengshan,Sun Yu,Zhou Feifei
Abstract
AbstractIdentifying potential prognostic factors of CSM patients could improve doctors’ clinical decision-making ability. The study retrospectively collected the baseline data of population characteristics, clinical symptoms, physical examination, neurological function and quality of life scores of patients with CSM based on the clinical big data research platform. The modified Japanese Orthopedic Association (mJOA) score and SF-36 score from the short-term follow-up data were entered into the cluster analysis to characterize postoperative residual symptoms and quality of life. Four clusters were yielded representing different patterns of residual symptoms and quality of patients’ life. Patients in cluster 2 (mJOA RR 55.8%) and cluster 4 (mJOA RR 55.8%) were substantially improved and had better quality of life. The influencing factors for the better prognosis of patients in cluster 2 were young age (50.1 ± 11.8), low incidence of disabling claudication (5.0%) and pathological signs (63.0%), and good preoperative SF36-physiological function score (73.1 ± 24.0) and mJOA socre (13.7 ± 2.8); and in cluster 4 the main influencing factor was low incidence of neck and shoulder pain (11.7%). We preliminarily verified the reliability of the clustering results with the long-term follow-up data and identified the preoperative features that were helpful to predict the prognosis of the patients. This study provided reference and research basis for further study with a larger sample data, extracting more patient features, selecting more follow-up nodes, and improving clustering algorithm.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献