Boosting prairie dog optimizer for optimal planning of multiple wind turbine and photovoltaic distributed generators in distribution networks considering different dynamic load models

Author:

Elseify Mohamed A.,Hashim Fatma A.,Hussien Abdelazim G.,Abdel-Mawgoud Hussein,Kamel Salah

Abstract

AbstractDeploying distributed generators (DGs) supplied by renewable energy resources poses a significant challenge for efficient power grid operation. The proper sizing and placement of DGs, specifically photovoltaics (PVs) and wind turbines (WTs), remain crucial due to the uncertain characteristics of renewable energy. To overcome these challenges, this study explores an enhanced version of a meta-heuristic technique called the prairie dog optimizer (PDO). The modified prairie dogs optimizer (mPDO) incorporates a novel exploration phase inspired by the slime mold algorithm (SMA) food approach. The mPDO algorithm is proposed to analyze the substantial effects of different dynamic load characteristics on the performance of the distribution networks and the designing of the PV-based and WT-based DGs. The optimization problem incorporates various operational constraints to mitigate energy loss in the distribution networks. Further, the study addresses uncertainties related to the random characteristics of PV and WT power outputs by employing appropriate probability distributions. The mPDO algorithm is evaluated using cec2020 benchmark suit test functions and rigorous statistical analysis to mathematically measure its success rate and efficacy while considering different type of optimization problems. The developed mPDO algorithm is applied to incorporate both PV and WT units, individually and simultaneously, into the IEEE 69-bus distribution network. This is achieved considering residential, commercial, industrial, and mixed time-varying voltage-dependent load demands. The efficacy of the modified algorithm is demonstrated using the standard benchmark functions, and a comparative analysis is conducted with the original PDO and other well-known algorithms, utilizing various statistical metrics. The numerical findings emphasize the significant influence of load type and time-varying generation in DG planning. Moreover, the mPDO algorithm beats the alternatives and improves distributed generators' technical advantages across all examined scenarios.

Funder

Linköping University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3