Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells

Author:

Soleymani MeysamORCID,Khalighfard Solmaz,Khodayari Saeed,Khodayari Hamid,Kalhori Mohammad RezaORCID,Hadjighassem Mahmoud RezaORCID,Shaterabadi Zhila,Alizadeh Ali MohammadORCID

Abstract

AbstractFolate-targeted iron oxide nanoparticles (FA@Fe3O4 NPs) were prepared by a one-pot hydrothermal method and then used as cancer theranostic agents by combining magnetic resonance imaging (MRI) and magnetic hyperthermia therapy (MHT). Crystal structure, morphology, magnetic properties, surface functional group, and heating efficacy of the synthesized nanoparticles were characterized by XRD, TEM, VSM, FTIR, and hyperthermia analyses. The results indicated that the crystal structure, magnetic properties, and heating efficacy of the magnetite nanoparticles were improved by hydrothermal treatment. Toxicity of the prepared NPs was assessed in vitro and in vivo on the mammary cells and BALB/c mice, respectively. The results of the in vitro toxicity analysis showed that the FA@Fe3O4 NPs are relatively safe even at high concentrations of the NPs up to 1000 µg mL−1. Also, the targetability of the FA@Fe3O4 NPs for the detection of folate over-expressed cancer cells was evaluated in an animal model of breast tumor using MRI analysis. It was observed that T2-weighted magnetic resonance signal intensity was decreased with the three-time injection of the FA@Fe3O4 NPs with 24 h interval at a safe dose (50 mg kg−1), indicating the accumulation and retention of the NPs within the tumor tissues. Moreover, the therapeutic efficacy of the MHT using the FA@Fe3O4 NPs was evaluated in vivo in breast tumor-bearing mice. Hyperthermia treatment was carried out under a safe alternating magnetic field permissible for magnetic hyperthermia treatment (f = 150 kHz, H = 12.5 mT). The therapeutic effects of the MHT were evaluated by monitoring the tumor volume during the treatment period. The results showed that the mice in the control group experienced an almost 3.5-fold increase in the tumor volume during 15 days, while, the mice in the MHT group had a mild increase in the tumor volume (1.8-fold) within the same period (P < 0.05). These outcomes give promise that FA@Fe3O4 NPs can be used as theranostic agents for the MRI and MHT applications.

Funder

Tehran University of Medical Sciences and Health Services

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3