Author:
Yong Tae-Hoon,Yang Su,Lee Sang-Jeong,Park Chansoo,Kim Jo-Eun,Huh Kyung-Hoe,Lee Sam-Sun,Heo Min-Suk,Yi Won-Jin
Abstract
AbstractThe purpose of this study was to directly and quantitatively measure BMD from Cone-beam CT (CBCT) images by enhancing the linearity and uniformity of the bone intensities based on a hybrid deep-learning model (QCBCT-NET) of combining the generative adversarial network (Cycle-GAN) and U-Net, and to compare the bone images enhanced by the QCBCT-NET with those by Cycle-GAN and U-Net. We used two phantoms of human skulls encased in acrylic, one for the training and validation datasets, and the other for the test dataset. We proposed the QCBCT-NET consisting of Cycle-GAN with residual blocks and a multi-channel U-Net using paired training data of quantitative CT (QCT) and CBCT images. The BMD images produced by QCBCT-NET significantly outperformed the images produced by the Cycle-GAN or the U-Net in mean absolute difference (MAD), peak signal to noise ratio (PSNR), normalized cross-correlation (NCC), structural similarity (SSIM), and linearity when compared to the original QCT image. The QCBCT-NET improved the contrast of the bone images by reflecting the original BMD distribution of the QCT image locally using the Cycle-GAN, and also spatial uniformity of the bone images by globally suppressing image artifacts and noise using the two-channel U-Net. The QCBCT-NET substantially enhanced the linearity, uniformity, and contrast as well as the anatomical and quantitative accuracy of the bone images, and demonstrated more accuracy than the Cycle-GAN and the U-Net for quantitatively measuring BMD in CBCT.
Funder
the National Research Foundation of Korea (NRF) grant funded by the Korea government
the Korea Medical Device Development Fund grant funded by the Korea government
Publisher
Springer Science and Business Media LLC
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献