Ti-based robust MOFs in the combined photocatalytic degradation of emerging organic contaminants

Author:

Rojas Sara,García-González Jessica,Salcedo-Abraira Pablo,Rincón Irene,Castells-Gil Javier,Padial Natalia M.,Marti-Gastaldo Carlos,Horcajada Patricia

Abstract

AbstractPhotocatalysis process is a promising technology for environmental remediation. In the continuous search of new heterogeneous photocatalysts, metal–organic frameworks (MOFs) have recently emerged as a new type of photoactive materials for water remediation. Particularly, titanium-based MOFs (Ti-MOFs) are considered one of the most appealing subclass of MOFs due to their promising optoelectronic and photocatalytic properties, high chemical stability, and unique structural features. However, considering the limited information of the reported studies, it is a hard task to determine if real-world water treatment is attainable using Ti-MOF photocatalysts. In this paper, via a screening with several Ti-MOFs, we originally selected and described the potential of a Ti-MOF in the photodegradation of a mixture of relevant Emerging Organic Contaminants (EOCs) in real water. Initially, two challenging drugs (i.e., the β-blocker atenolol (At) and the veterinary antibiotic sulfamethazine (SMT)) and four water stable and photoactive Ti-MOF structures have been rationally selected. From this initial screening, the mesoporous Ti-trimesate MIL-100(Ti) was chosen as the most promising photocatalyst, with higher At or SMT individual photodegradation (100% of At and SMT photodegradation in 2 and 4 h, respectively). Importantly, the safety of the formed by-products from the At and SMT photodegradation was confirmed. Finally, the At and SMT photodegradation capacity of MIL-100(Ti) was confirmed under realistic conditions, by using a mixture of contaminants in tap drinking water (100% of At and SMT photodegradation in 4 h), proven in addition its potential recyclability, which reinforces the potential of MIL-100(Ti) in water remediation.

Funder

Ministerio de Ciencia e Innovación

Generalitat Valenciana

Fundación Bancaria Caixa d'Estalvis i Pensions de Barcelona

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3