Receiver aperture and multipath effects on power loss and modal crosstalk in a THz wireless link using orbital-angular-momentum multiplexing

Author:

Su Xinzhou,Zhang Runzhou,Zhao Zhe,Song Hao,Minoofar Amir,Hu Nanzhe,Zhou Huibin,Zou Kaiheng,Pang Kai,Song Haoqian,Lynn Brittany,Zach Shlomo,Tur Moshe,Molisch Andreas F.,Sasaki Hirofumi,Lee Doohwan,Willner Alan E.

Abstract

AbstractThe channel capacity of terahertz (THz) wireless communications can be increased by multiplexing multiple orthogonal data-carrying orbital-angular-momentum (OAM) beams. In THz links using OAM multiplexing (e.g., Laguerre-Gaussian $${\mathrm{LG}}_{ \ell,p}$$ LG , p beams with p = 0), the system performance might degrade due to limited receiver aperture size and multipath effects. A limited-size aperture can truncate the received beam profile along the radial direction. In addition, due to beam divergence, part of the beam might interact with reflectors in the environment, causing the signal to reflect and interfere at the receiver with the directly propagating part of the beam; this is known as the multipath effect. In this paper, we simulate and analyze the impact of both effects on the equality of the THz OAM link by considering a full two-dimensional (2-D) LG modal set. The simulation results show (i) a limited-size receiver aperture can induce power loss and modal power coupling mainly to LG modes with the same but p > 0 for directly propagated OAM beams; (ii) the multipath effect can induce modal power coupling across multiple 2-D LG modes, which leads to inter-channel coupling among the different channels in an OAM multiplexed link; (iii) the interference between the reflected and direct beams can induce intra-channel coupling between the received signals from the reflected and direct beams; and (iv) beams with a higher OAM order (e.g., from ± 1 to ± 5) or a lower carrier frequency (e.g., from 0.1 to 1 THz) experience larger intra- and inter-channel coupling. The intra- and inter-channel coupling in an OAM-multiplexed THz link can degrade the signal-to-noise ratio (SNR) and induce SNR penalty when compared to a single-channel system.

Funder

Vannevar Bush Faculty Fellowship sponsored by the Basic Research Office of the Assistant Secretary of Defense (ASD) for Research and Engineering (R&E) and funded by the Office of Naval Research

Defense Security Cooperation Agency

Airbus Institute for Engineering Research

Qualcomm Innovation Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3