Effect of homogenization and solution treatments time on the elevated-temperature mechanical behavior of Inconel 718 fabricated by laser powder bed fusion

Author:

Fayed Eslam M.,Saadati Mohammad,Shahriari Davood,Brailovski Vladimir,Jahazi Mohammad,Medraj Mamoun

Abstract

AbstractIn the present study, the effect of homogenization and solution treatment times on the elevated-temperature (650 °C) mechanical properties and the fracture mechanisms of Inconel 718 (IN718) superalloy fabricated by laser powder bed fusion (LPBF) was investigated. Homogenization times between 1 and 7 h at 1080 °C were used, while solution treatments at 980 °C were performed in the range from 15 to 60 min. The as-printed condition showed the lowest strength but the highest elongation to failure at 650 °C, compared to the heat-treated conditions. After heat treatments, the strength of the IN718 alloy increased by 20.3–31% in relation to the as-printed condition, depending on the treatment time, whereas the ductility decreased significantly, by 67.4–80%. Among the heat treatment conditions, the 1 h homogenized conditions at 1080 °C (HSA1 and HSA2) exhibited the highest strength and ductility due to the combined effects of the precipitation hardening and sub-structural changes. Further increases in the homogenization time to 4 and 7 h led to a decrease in the strength and significant ductility loss of the LPBF IN718 due to the considerable annihilation of the dislocation tangles and a greater precipitation of coarse MC carbide particles. Furthermore, it was found that the solution treatment duration had a crucial influence on the mechanical properties at 650 °C due to the increase in the grain boundary strength through the pinning effect of the intergranular δ-phase. In addition, the fracture mechanism of the LPBF IN718 was found to be dependent on the heat treatment time. Finally, this investigation provides a map that summarizes the effect of homogenization and solution treatment times on the high-temperature mechanical behavior of LPBF IN718 by relating it to the corresponding microstructural evolution. This effort strives to assist in tailoring the mechanical properties of LPBF IN718 based on the design requirements for some specific applications.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference38 articles.

1. Akca, E. & Gürsel, A. A review on superalloys and IN718 nickel-based Inconel superalloy. Period. Eng. Nat. Sci. 3, 15–27 (2015).

2. Seede, R., Mostafa, A., Brailovski, V., Jahazi, M. & Medraj, M. Microstructural and microhardness evolution from homogenization and hot isostatic pressing on selective laser melted Inconel 718: Structure, texture, and phases. J. Manuf. Mater. Process. 2, 30 (2018).

3. Wang, X., Gong, X. & Chou, K. Review on powder-bed laser additive manufacturing of Inconel 718 parts. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 231, 1890–1903 (2017).

4. Jia, Q. & Gu, D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: densification, microstructure and properties. J. Alloys Compd. 585, 713–721 (2014).

5. Tucho, W. M., Cuvillier, P., Sjolyst-Kverneland, A. & Hansen, V. Microstructure and hardness studies of Inconel 718 manufactured by selective laser melting before and after solution heat treatment. Mater. Sci. Eng. A 689, 220–232 (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3