Laser nanostructured gold biosensor for proto-oncogene detection

Author:

Hughes Cian,Sreenilayam Sithara,Brabazon Dermot

Abstract

AbstractThe advancement of biosensor research has been a primary driving force in the continuing progress of modern medical science. While traditional nanofabrication methods have long been the foundation of biosensor research, recent years have seen a shift in the field of nanofabrication towards laser-based techniques. Here we report a gold-based biosensor, with a limit of detection (LoD) 3.18 µM, developed using environmentally friendly Laser Ablation Synthesis in Liquid (LASiS) and Confined Atmospheric Pulsed-laser (CAP) deposition techniques for the first time. The sensors were able detect a DNA fragment corresponding to the longest unpaired sequence of the c-Myc gene, indicating their potential for detecting such fragments in the ctDNA signature of various cancers. The LoD of the developed novel biosensor highlights its reliability and sensitivity as an analytical platform. The reproducibility of the sensor was examined via the production and testing of 200 sensors with the same fabrication methodology. This work offers a scalable, and green approach to fabricating viable biosensors capable of detecting clinically relevant oncogenic targets.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3