Identification of the robust predictor for sepsis based on clustering analysis

Author:

Jang Jae Yeon,Yoo Gilsung,Lee Taesic,Uh Young,Kim Juwon

Abstract

AbstractSepsis is a life-threatening disorder with high incidence and mortality rate. However, the early detection of sepsis is challenging due to lack of specific marker and various etiology. This study aimed to identify robust risk factors for sepsis via cluster analysis. The integrative task of the automatic platform (i.e., electronic medical record) and the expert domain was performed to compile clinical and medical information for 2,490 sepsis patients and 16,916 health check-up participants. The subjects were categorized into 3 and 4 groups based on seven clinical and laboratory markers (Age, WBC, NLR, Hb, PLT, DNI, and MPXI) by K-means clustering. Logistic regression model was performed for all subjects including healthy control and sepsis patients, and cluster-specific cases, separately, to identify sepsis-related features. White blood cell (WBC), well-known parameter for sepsis, exhibited the insignificant association with the sepsis status in old age clusters (K3C3 and K4C3). Besides, NLR and DNI were the robust predictors in all subjects as well as three or four cluster-specific subjects including K3C3 or K4C3. We implemented the cluster-analysis for real-world hospital data to identify the robust predictors for sepsis, which could contribute to screen likely overlooked and potential sepsis patients (e.g., sepsis patients without WBC count elevation).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3