GC–MS, quantum mechanics calculation and the antifungal activity of river red gum essential oil when applied to four natural textiles

Author:

Taha Ayman S.,Ibrahim Ibrahim H. M.,Abo-Elgat Wael A. A.,Abdel-Megeed Ahmed,Salem Mohamed Z. M.,El-Kareem Mamoun S. M. Abd

Abstract

AbstractThe most important uses of old fabrics include clothing, mummification, and bookbinding. However, because they are predominantly constructed of natural materials, they are particularly susceptible to physical and chemical deterioration brought on by fungi. The treatments that are typically used to preserve old textiles focus on the use of synthetic fungicides, which have the potential to be dangerous for both human health and the environment. Essential oils (EOs), which are safe for the environment and have no negative effects on human health, have been widely advocated as an alternative to conventional antifungals. Four natural fabrics—linen, cotton, wool, and silk—were utilized in the current work. The extracted EO from leaves of river red gum (Eucalyptus camaldulensis Dehnh.) were prepared at 125, 250, and 500 µL/L. Aspergillus flavus, Fusarium culmorum and Aspergillus niger were inoculated separately into the treated four fabrics with the EO at concentrations of 125, 250, and 500 µL/L or the main compounds (spathulenol and eucalyptol) at the concentrations of 6, 12, 25, and 50 µL/L and were then compared to the un-treated samples. GC–MS was used to analyze the EO chemical composition, while visual observations and scanning electron microscopic (SEM) were used to study the fungal growth inhibition. Spathulenol (26.56%), eucalyptol (14.91%), and p-cymene (12.40%) were the principal chemical components found in E. camaldulensis EO by GC–MS. Spathulenol molecule displayed the highest electrostatic potential (ESP) compared with the other primary compound, as calculated by quantum mechanics. In the untreated textile samples, SEM analysis revealed substantial proliferation of hyphae from A. flavus, F. culmorum, and A. niger. The fungal growth was completely inhibited at a concentration of 500 µL/L from the EO. Both eucalyptol and spathulenol completely inhibited the formation of the fungal spores at a concentration of 50 µL/L, although eucalyptol was more effective than spathulenol across the board for all four textiles. The results support E. camaldulensis EO functionalized textiles as an effective active antifungal agent.

Funder

Alexandria University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference124 articles.

1. Ivana, S. & Stana, K. in Textiles for Advanced Applications (eds Kumar Bipin & Thakur Suman) Ch. 1 (IntechOpen, 2017).

2. Mather, R. R. & Wardman, R. H. The Chemistry of Textile Fibres (Royal Society of Chemistry, 2015).

3. Gameson, R. The material fabric of early British books. The Cambridge history of the book in Britain 1, 13-93 (2012).

4. Clarkson, C. A Hitherto Unrecorded English Romanesque Book Sewing Technique. Roger Powell, the Complete Binder: Liber Amicorum. Turnhout: Brepols, 215–239 (1996).

5. Thompson, J. Edward William Lane’s “Description of Egypt”. Int. J. Middle East Stud. 28, 565–583. https://doi.org/10.1017/S0020743800063832 (1996).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3