Linking climate and infectious disease trends in the Northern/Arctic Region

Author:

Ma Yan,Destouni Georgia,Kalantari Zahra,Omazic Anna,Evengård Birgitta,Berggren Camilla,Thierfelder Tomas

Abstract

AbstractRecognition of climate-sensitive infectious diseases is crucial for mitigating health threats from climate change. Recent studies have reasoned about potential climate sensitivity of diseases in the Northern/Arctic Region, where climate change is particularly pronounced. By linking disease and climate data for this region, we here comprehensively quantify empirical climate-disease relationships. Results show significant relationships of borreliosis, leptospirosis, tick-borne encephalitis (TBE), Puumala virus infection, cryptosporidiosis, and Q fever with climate variables related to temperature and freshwater conditions. These data-driven results are consistent with previous reasoning-based propositions of climate-sensitive infections as increasing threats for humans, with notable exceptions for TBE and leptospirosis. For the latter, the data imply decrease with increasing temperature and precipitation experienced in, and projected for, the Northern/Arctic Region. This study provides significant data-based underpinning for simplified empirical assessments of the risks of several infectious diseases under future climate change.

Funder

the Nordforsk Centre of Excellence CLINF

Stockholm University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference29 articles.

1. IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds Masson-Delmotte, V. et al.) (2018) (in Press).

2. IPCC. Climate Change 2014: Synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (eds Core Writing Team, et al.) 151 (2014).

3. Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

4. Smith, K. R. & Woodward, A. Human health: impacts, adaptation, and co-benefits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 709–754. https://www.ipcc.ch/report/ar5/wg2/human-health-impacts-adaptation-and-co-benefits/ (2014).

5. Thierfelder, T. & Evengård, B. CLINF: an integrated project design. In Nordic Perspectives on the Responsible Development of the Arctic: Pathways to Action (ed. Nord, D. C.) 71–92 (Springer International Publishing, 2021) https://doi.org/10.1007/978-3-030-52324-4_4.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3