UHPLC-HRMS-based metabolomic and lipidomic characterization of glioma cells in response to anlotinib

Author:

Shi Yingying,Li Zhuolun,Du Qiuzheng,Li Wenxi,Liu Jiyun,Jia Qingquan,Xue Lianping,Zhang Xiaojian,Sun Zhi

Abstract

AbstractAnlotinib, as a promising oral small-molecule antitumor drug, its role in glioma has been only reported in a small number of case reports. Therefore, anlotinib has been considered as a promising candidate in glioma. The aim of this study was to investigate the metabolic network of C6 cells after exposure to anlotinib and to identify anti-glioma mechanism from the perspective of metabolic reprogramming. Firstly, CCK8 method was used to evaluate the effects of anlotinib on cell proliferation and apoptosis. Secondly, ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS)-based metabolomic and lipidomic were developed to characterize the metabolite and lipid changes in cell and cell culture medium (CCM) caused by anlotinib in the treatment of glioma. As a result, anlotinib had concentration-dependent inhibitory effect with the concentration range. In total, twenty-four and twenty-three disturbed metabolites in cell and CCM responsible for the intervention effect of anlotinib were screened and annotated using UHPLC-HRMS. Altogether, seventeen differential lipids in cell were identified between anlotinib exposure and untreated groups. Metabolic pathways, including amino acid metabolism, energy metabolism, ceramide metabolism, and glycerophospholipid metabolism, were modulated by anlotinib in glioma cell. Overall, anlotinib has an effective treatment against the development and progression of glioma, and these remarkable pathways can generate the key molecular events in cells treated with anlotinib. Future research into the mechanisms underlying the metabolic changes is expected to provide new strategies for treating glioma.

Funder

Bethune Medical Science Foundation

Kang Meng Medical Research Foundation

Joint Project of Health Commission of Henan Province

Key Research and Promotion Project of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3