Water clusters and density fluctuations in liquid water based on extended hierarchical clustering methods

Author:

Gao Yitian,Fang Hongwei,Ni Ke,Feng Yixuan

Abstract

AbstractThe microscopic structures of liquid water at ambient temperatures remain a hot debate, which relates with structural and density fluctuations in the hydrogen bond network. Here, we use molecular dynamics simulations of liquid water to study the properties of three-dimensional cage-like water clusters, which we investigate using extended graph-based hierarchical clustering methods. The water clusters can cover over 95% of hydrogen bond network, among which some clusters maximally encompass thousands of molecules extending beyond 3.0 nm. The clusters imply fractal behaviors forming percolating networks and the morphologies of small and large clusters show different scaling rules. The local favored clusters and the preferred connections between adjacent clusters correspond to lower energy and conformational entropy depending on cluster topologies. Temperature can destroy large clusters into small ones. We show further that the interior of clusters favors high-density patches. The water molecules in the small clusters, inside which are the void regarded as hydrophobic objects, have a preference for being more tetrahedral. Our results highlight the properties and changes of water clusters as the fundamental building blocks of hydrogen bond networks. In addition, the water clusters can elucidate structural and density fluctuations on different length scales in liquid water.

Funder

National Natural Science Foundation of China

Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3