Research on residual GM optimization based on PEMEA-BP correction

Author:

Duan Junhang,Zhu Ling,Xing Wei,Zhang Xi,Peng Zhong,Gou Huating

Abstract

AbstractWith the advantages of small samples and high accuracy, Grey Model (GM) still has two major problems need to be addressed, high input data requirements and large margin of error. Hence, this paper proposes an algorithm based on Populational Entropy Based Mind Evolutionary Algorithm-Error Back Propagation Training Artificial Neural Algorithm to modify GM residual tail, which will not only keep the advantages of GM, but also expand its scope of use to various non-linear and even multidimensional objects. Meanwhile, it can avoid defects of other algorithms, such as slow convergence and easy to fall into the local minimum. In small samples data experiments, judging from SSE, MAE, MSE, MAPE, MRE and other indicators, this new algorithm has significant advantage over GM, BP algorithm and combined genetic algorithm in terms of simulation accuracy and convergence speed.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3