Author:
Kurban Hasan,Kurban Mustafa,Dalkilic Mehmet M.
Abstract
AbstractPredicting material properties by solving the Kohn-Sham (KS) equation, which is the basis of modern computational approaches to electronic structures, has provided significant improvements in materials sciences. Despite its contributions, both DFT and DFTB calculations are limited by the number of electrons and atoms that translate into increasingly longer run-times. In this work we introduce a novel, data-centric machine learning framework that is used to rapidly and accurately predicate the KS total energy of anatase $${\mathrm{TiO}}_2$$
TiO
2
nanoparticles (NPs) at different temperatures using only a small amount of theoretical data. The proposed framework that we call co-modeling eliminates the need for experimental data and is general enough to be used over any NPs to determine electronic structure and, consequently, more efficiently study physical and chemical properties. We include a web service to demonstrate the effectiveness of our approach.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献