Federated clustered multi-domain learning for health monitoring

Author:

Jiang ShiyiORCID,Li Yuan,Firouzi Farshad,Chakrabarty Krishnendu

Abstract

AbstractWearable Internet of Things (WIoT) and Artificial Intelligence (AI) are rapidly emerging technologies for healthcare. These technologies enable seamless data collection and precise analysis toward fast, resource-abundant, and personalized patient care. However, conventional machine learning workflow requires data to be transferred to the remote cloud server, which leads to significant privacy concerns. To tackle this problem, researchers have proposed federated learning, where end-point users collaboratively learn a shared model without sharing local data. However, data heterogeneity, i.e., variations in data distributions within a client (intra-client) or across clients (inter-client), degrades the performance of federated learning. Existing state-of-the-art methods mainly consider inter-client data heterogeneity, whereas intra-client variations have not received much attention. To address intra-client variations in federated learning, we propose a federated clustered multi-domain learning algorithm based on ClusterGAN, multi-domain learning, and graph neural networks. We applied the proposed algorithm to a case study on stress-level prediction, and our proposed algorithm outperforms two state-of-the-art methods by 4.4% in accuracy and 0.06 in the F1 score. In addition, we demonstrate the effectiveness of the proposed algorithm by investigating variants of its different modules.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3