Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia

Author:

Alabdalall Amira H.,Aldakheel Fatimah A.,Ababutain Ibtisam M.,Chakroun Hanen,Alghamdi Azzah I.,Hammami Ines,Al Dosary Sahar K.,Youssef Tamer E.,Albarrag Ahmed M.,Aldakeel Sumayh A.,Aldughaish Rawan,Al Qurin Nada,ElKomy Hesham M.

Abstract

Abstract2,6-Dichlorophenol (2,6-DCP) is an aromatic compound with industrial importance in making insecticides, herbicides, and other organic compounds. However, it poses serious health and ecological problems. Microbial degradation of 2,6-DCP has been widely applied due to its effectiveness and eco-friendly characteristics. In this study, Trichoderma longibraciatum was isolated from an industrial soil sample in Dammam, Saudi Arabia using the enrichment method of mineral salt's medium (MSM) amended with 2,6-DCP. Morphological and molecular identification (using the internal transcribed spacer rRNA gene sequencing) of the 2,6-DCP tolerating fungal isolate were charactraized. The fungal isolate has demonstrated a tolerance to 2,6-DCP up to 300 mg/L. Mycelial growth and fungal sporulation were reduced with increasing 2,6-DCP concentrations up to 96 h incubation period. However, after 168 h incubation period, the fungal isolate recorded maximum growth at all the tested 2,6-DCP concentrations up to 150 mg/L. Carboxy methyl cellulase production by tested fungus was decreased by increasing 2,6-DCP concentration up to 75 mg/L. The biodegradation pattern of 2,6-DCP in GM liquid medium using GC–mass analysis as well as the degradation pathway was presented. This study provides a promising fungal isolate that could be used in the bioremediation process for chlorinated phenols in soil.

Funder

Deanship of scientific Research, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3