Thermal tolerances of Popenaias popeii (Texas hornshell) and its host fish from the Rio Grande Basin, Texas

Author:

Rangaswami Xenia L.,Goldsmith Amanda M.,Khan Jennifer M.,Robertson Clinton R.,Lopez Roel R.,Randklev Charles R.

Abstract

AbstractFreshwater mussels are particularly sensitive to hydrologic changes, including streamflow and temperature, resulting in global decline. The Devils River in south-central Texas harbors the endangered freshwater mussel Popenaias popeii (Unionidae; Texas hornshell). There is concern that water withdrawals from the underlying aquifer may be negatively impacting this species. To assess this risk, we evaluated upper thermal tolerances (LT05 and LT50) of larvae (glochidia) and juveniles from two sites. After being acclimated to 27 °C, glochidia were subjected to five experimental temperatures (30, 32, 34, 36, and 38 °C) and non-acclimated control (20 °C) for 12-h and 24-h while juveniles were subjected to three experimental temperatures (30, 32, and 36 °C) and non-acclimated control (20 °C) for 96-h. We overlaid tolerance estimates against in situ water temperature and discharge data to evaluate thermal exceedances. Additionally, we reviewed upper thermal tolerances of P. popeii’s presumed host fish (Carpiodes carpio, Cyprinellas lutrensis, and Moxostoma congestum) and their congeners. Stream temperatures only occasionally exceeded mussel LT05/50 and fish CLMax/LTMax, likely due to the Devils River’s large spring input, highlighting the importance of protecting spring flows. We provide a practical framework for assessing hydrological needs of aquatic ectotherms, including the parasite-host relationship, which can be used to optimize environmental management.

Funder

Texas Parks and Wildlife Department

U.S. Fish and Wildlife Service

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3