Water provisioning increases caged worker bee lifespan and caged worker bees are living half as long as observed 50 years ago

Author:

Nearman Anthony,vanEngelsdorp Dennis

Abstract

AbstractThe high loss rates of honey bee colonies drive research for solutions aimed to mitigate these losses. While honey bee colonies are superorganisms, experiments that measure the response to stressors often use caged individuals to allow for inference in a controlled setting. In an initial experiment, we showed that caged honey bees provisioned with various types of water (deionized, 1%NaCl in deionized, or tap) have greater median lifespans than those that did not. While researching the history of water provisioning in cage studies, we observed that the median lifespan of caged honey bees has been declining in the US since the 1970’s, from an average of 34.3 days to 17.7 days. In response to this, we again turned to historical record and found a relationship between this trend and a decline in the average amount of honey produced per colony per year in the US over the last 5 decades. To understand the relationship between individual bee lifespan and colony success we used an established honey bee population model (BEEHAVE) to simulate the predicted effects of decreased worker lifespans. Declines in downstream measures of colony population, overall honey production, and colony lifespan resulted from reduced worker bee lifespans. Modeled colony lifespans allowed us to estimate colony loss rates in a beekeeping operation where lost colonies are replaced annually. Resulting loss rates were reflective of what beekeepers’ experience today, which suggests the average lifespan of individual bees plays an important role in colony success.

Funder

North East Sustainable Agriculture Research and Education

USDA National Institute of Food and Agriculture

University of Maryland Department of Entomology Gahan Scholarship

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference78 articles.

1. Bee Informed Partnership. Managment Survey Results, https://bip2.beeinformed.org/survey/ (2021).

2. Williams, G. R. et al. Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J. Apic. Res. 52, 1–36 (2013).

3. Dziechciarz, P., Borsuk, G. & Olszewski, K. Prospects and validity of laboratory cage tests conducted in honeybee research part one: Main directions of use of laboratory cage tests in honeybee research. J. Apic. Sci. 63, 201–207 (2019).

4. Johnson, R. M., Henry S. Pollock & Berenbaum, M. R. Synergistic interactions between in-hive miticides in Apis mellifera. J. Econ. Entomol. 102, 474–479 (2009).

5. Alaux, C. et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. Microbiol. 12, 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x (2010)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3