Evaluating algorithms of decision tree, support vector machine and regression for anode side catalyst data in proton exchange membrane water electrolysis

Author:

Arjmandi Mahdi,Fattahi Moslem,Motevassel Mohsen,Rezaveisi Hosna

Abstract

AbstractNowadays, due to the various type of problems stemmed from using chemical compounds and fossil fuels which have widely influence on whole environment including acid rain, polar ice melting and etc., number of researches have been leading on replacing the nonrenewable energy sources with renewable ones in order to produce clean fuels. Among these, hydrogen emerges as a quintessential clean fuel, garnering substantial attention for its potential to be synthesized from the electric power generated by renewable sources like nuclear and solar energies. This is achieved through the employment of a proton exchange membrane water electrolysis (PEMWE) system, widely recognized as one of the most proficient and economically viable technologies for effecting the separation of H2O into H+ and OH. In this study, the important affecting parameters on the anode side of catalyst in PEMWE and analyzed them by machine-learning (ML) algorithms through developing a data science (DS) procedure were discussed. Various machine learning models were subjected to comparison, wherein the Decision Tree models, specifically those configured with maximum depths of 3 and 4, emerged as the optimal choices, attaining a perfect 100% accuracy across both Dataset 1 and Dataset 2. Moreover, notable enhancements in accuracy values were observed for the Support Vector Machine (SVM) model, registering increments from 0.79 to 0.82 for Dataset 1 and 2, respectively. In stark contrast, the remaining models experienced a decrement in their accuracy scores. This phenomenon underscores the pivotal role played by the data generation process in rendering the models more faithful to real-world scenarios.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3