Hybrid modeling approach for mode-locked laser diodes with cavity dispersion and nonlinearity

Author:

Cuyvers Stijn,Poelman Stijn,Van Gasse Kasper,Kuyken Bart

Abstract

AbstractSemiconductor-based mode-locked lasers, integrated sources enabling the generation of coherent ultra-short optical pulses, are important for a wide range of applications, including datacom, optical ranging and spectroscopy. As their performance remains largely unpredictable due to the lack of commercial design tools and the poorly understood mode-locking dynamics, significant research has focused on their modeling. In recent years, traveling-wave models have been favored because they can efficiently incorporate the rich semiconductor physics of the laser. However, thus far such models struggle to include nonlinear and dispersive effects of an extended passive laser cavity, which can play an important role for the temporal and spectral pulse evolution and stability. To overcome these challenges, we developed a hybrid modeling strategy by unifying the traveling-wave modeling technique for the semiconductor laser sections with a split-step Fourier method for the extended passive laser cavity. This paper presents the hybrid modeling concept and exemplifies for the first time the significance of the third order nonlinearity and dispersion of the extended cavity for a 2.6 GHz III–V-on-Silicon mode-locked laser. This modeling approach allows to include a wide range of physical phenomena with low computational complexity, enabling the exploration of novel operating regimes such as chip-scale soliton mode-locking.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative investigation of group velocity dispersion with nonlinear phase modulation in fiber optic WDM transmission;International Journal of Information Technology;2024-08-25

2. Hybrid modeling technique for on-chip extended cavity semiconductor mode-locked lasers;2022 28th International Semiconductor Laser Conference (ISLC);2022-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3