Peak response regularization for localization

Author:

Yu Jiawei,Yao Jinzhen,Zhao Chuangxin,Zhao Xianhong,Hu Qintao

Abstract

AbstractDeep convolutional neural networks approaches often assume that the feature response has a Gaussian distribution with target-centered peak response, which can be used to guide the target location and classification. Nevertheless, such an assumption is implausible when there is progressive interference from other targets and/or background noise, which produces sub-peaks on the tracking response map and causes model drift. In this paper, we propose a feature response regularization approach for sub-peak response suppression and peak response enforcement and aim to handle progressive interference systematically. Our approach, referred to as Peak Response Regularization (PRR), applies simple-yet-efficient method to aggregate and align discriminative features, which convert local extremal response in discrete feature space to extremal response in continuous space, which enforces the localization and representation capability of convolutional features. Experiments on human pose detection, object detection, object tracking, and image classification demonstrate that PRR improves the performance of image tasks with a negligible computational cost.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3