Author:
Yamamoto Hiroki,Ishida Yuko,Zhang Siying,Osako Miyu,Nosaka Mizuho,Kuninaka Yumi,Ishigami Akiko,Iwahashi Yuya,Aragane Miki,Matsumoto Lennon,Kimura Akihiko,Kondo Toshikazu
Abstract
AbstractCisplatin is an effective chemotherapeutic agent widely used for the treatment of various solid tumors. However, cisplatin has an important limitation in its use; currently, there is no method to ameliorate cisplatin-induced acute kidney injury (AKI). Thrombomodulin (TM) is well known not only for its role as a cofactor in the clinically important natural anticoagulation pathway but also for its anti-inflammatory properties. Here, we investigated the effects of TM in cisplatin-induced AKI. In mice intraperitoneally injected with 15 mg/kg cisplatin, TM (10 mg/kg) or PBS was administered intravenously at 24 h after cisplatin injection. TM significantly attenuated cisplatin-induced nephrotoxicity with the suppressed elevation of blood urea nitrogen and serum creatinine, and reduced histological damages. Actually, TM treatment significantly alleviated oxidative stress-induced apoptosis by reducing reactive oxygen species (ROS) levels in cisplatin-treated renal proximal tubular epithelial cells (RPTECs) in vitro. Furthermore, TM clarified cisplatin-induced apoptosis by reducing caspase-3 levels. In addition, TM attenuated the endoplasmic reticulum (ER) stress signaling pathway in both renal tissues and RPTECs to protect the kidneys from cisplatin-induced AKI. These findings suggest that TM is a potential protectant against cisplatin-induced nephrotoxicity through suppressing ROS generation and ER stress in response to cisplatin.
Funder
Grants-in-Aids for Scientific Research
Challenging Exploratory Research
Publisher
Springer Science and Business Media LLC