Impacts of inter-annual climate variability on reproductive phenology and postnatal development of morphological features of three sympatric bat species

Author:

Eghbali Hojjat,Sharifi Mozafar

Abstract

AbstractInter-annual variation in weather conditions has been shown to affect the reproductive phenological patterns of many organisms. Because of their relatively small body size and dependence on ectothermic prey, temperate-zone insectivorous bats are particularly sensitive to adverse spring environmental conditions that affect the duration of gestation and timing of parturition in these animals. This study aimed to compare phenological recruitment, birth seasonality and synchrony and morphological changes during postnatal growth in Rhinolophuseuryale, Rhinolophusferrumequinum and Myotisemarginatus in two consecutive years representing a typical dry (2015) and an extremely wet climatic event (2016) in a nursing colony in Kerend cave, western Iran. Females of these three bat species arrived from their wintering cave to the nursing colony in late April to mid-May each year. Synchrony of parturition as defined by amount clustering of births within a year assessed by circular statistics showed that for R. euryale and R. ferrumequinum the angular variance in dry year were significantly (P < 0.05) lower than in wet year, indicating a low level of synchrony in 2016. Similar comparison showed that births from M. emarginatus were highly synchrony, and there were no significant differences in timing of births among years (P > 0.05). Generalized estimating equation (GEE) for R. euryale indicated that for body mass and forearm length tests of parallelism (interaction term or growth rate) and tests for equal intercepts (y-intercepts or group term) were significant (P < 0.001). In R. ferrumequinum, the initial (y-intercepts) forearm length and body mass were not significantly (P > 0.05) different between the 2 years, but the tests for parallelism showed a significant decrease in growth rates of body mass and forearm length in the wet year (P < 0.05). Similar comparison in M. emarginatus indicated that for body mass, tests of parallelism were significantly different (P = 0.004), while tests for equal intercepts were not (P = 0.23). Our results suggest that climate changes may have unequal effects on different bat species due to differences in foraging habitat, niche partitioning, reproductive requirements and foraging strategies.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference100 articles.

1. Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).

2. Frick, W. F., Reynolds, D. & Kunz, T. H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J. Anim. Ecol. 79, 128–136 (2010).

3. Hartmann, D. et al. Observations: Atmosphere and surface. In Climate Change: The Physical Science Basis (eds Stocker, T. F. et al.) 159–254 (Cambridge University Press, 2013).

4. Murumkar, A. et al. Trends and spatial patterns of 20th century temperature, rainfall and PET in the semi-arid Logone River basin, Sub-Saharan Africa. J. Arid Environ. 178, 104168. https://doi.org/10.1016/j.jaridenv.2020.104168 (2020).

5. IPCC. Climate change 2007: The physical science basis in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3