Elderly and visually impaired indoor activity monitoring based on Wi-Fi and Deep Hybrid convolutional neural network

Author:

Deepa K.,Bacanin Nebojsa,Askar S. S.,Abouhawwash Mohamed

Abstract

AbstractA drop in physical activity and a deterioration in the capacity to undertake daily life activities are both connected with ageing and have negative effects on physical and mental health. An Elderly and Visually Impaired Human Activity Monitoring (EV-HAM) system that keeps tabs on a person’s routine and steps in if a change in behaviour or a crisis might greatly help an elderly person or a visually impaired. These individuals may find greater freedom with the help of an EVHAM system. As the backbone of human-centric applications like actively supported living and in-home monitoring for the elderly and visually impaired, an EVHAM system is essential. Big data-driven product design is flourishing in this age of 5G and the IoT. Recent advancements in processing power and software architectures have also contributed to the emergence and development of artificial intelligence (AI). In this context, the digital twin has emerged as a state-of-the-art technology that bridges the gap between the real and virtual worlds by evaluating data from several sensors using artificial intelligence algorithms. Although promising findings have been reported by Wi-Fi-based human activity identification techniques so far, their effectiveness is vulnerable to environmental variations. Using the environment-independent fingerprints generated from the Wi-Fi channel state information (CSI), we introduce Wi-Sense. This human activity identification system employs a Deep Hybrid convolutional neural network (DHCNN). The proposed system begins by collecting the CSI with a regular Wi-Fi Network Interface Controller. Wi-Sense uses the CSI ratio technique to lessen the effect of noise and the phase offset. The t- Distributed Stochastic Neighbor Embedding (t-SNE) is used to eliminate unnecessary data further. The data dimension is decreased, and the negative effects on the environment are eliminated in this process. The resulting spectrogram of the processed data exposes the activity’s micro-Doppler fingerprints as a function of both time and location. These spectrograms are put to use in the training of a DHCNN. Based on our findings, EVHAM can accurately identify these actions 99% of the time.

Funder

King Saud University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3