Experimental evidence of shear waves in fractional viscoelastic rheological models

Author:

Gomez Antonio,Callejas Antonio,Rus Guillermo,Saffari Nader

Abstract

AbstractFractional viscoelastic rheological models, such as the Kelvin Voigt Fractional Derivative model, have been proposed in the literature for modelling shear wave propagation in soft tissue. In this article, our previously developed wave propagation model for transluminal propagation based on a Kelvin Voigt Fractional Derivative wave equation is experimentally validated. The transluminal procedure uses the transmission and detection of shear waves through the luminal wall. The model was compared against high-speed camera observations in translucent elastography phantoms with similar viscoelastic properties to prostate tissue. An ad hoc cross-correlation procedure was used to reconstruct the angular displacement from the high-speed camera observations. Rheometry and shear wave elastography were used for characterising the shear wave velocity dispersion curve for the phantoms. Fractional viscoelastic properties were derived after fitting the dispersion curve to its analytical expression. Propagation features and amplitude spectra from simulations and high-speed camera observations were compared. The obtained results indicate that the model replicates the experimental observations with acceptable accuracy. The model presented here provides a useful tool to model transluminal procedures based on wave propagation and its interaction with the mechanical properties of the tissue outside the lumen.

Funder

Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3