High-performance ceramic/epoxy composite adhesives enabled by rational ceramic bandgaps

Author:

Hu J. B.

Abstract

AbstractHigh over-all properties, including low dielectric loss, high breakdown strength, high mechanical shock strength, high thermal conductivity and high weight stability, are very difficult to simultaneously achieve in electrical-insulation applicable cured potting-adhesive materials. To deal with this challenge, in this work, we have designed and fabricated a series of epoxy based composite potting-adhesives filled with low-cost and high-performance inorganic micro-particles including alpha-silica, alpha-alumina and alpha-SiC. Combination employment of high-molecular-weight and low-molecular-weight epoxy resins as matrices has been made. Heat-induced curing or crosslink of resin matrices has been carried out. Large band gap of silica filler has endowed the cured composite with high breakdown strength and ageing breakdown strength, and meanwhile relatively high deformation trait of silica has led to high shock strength of cured composite. Silica filler has been found to be superior to other two fillers, namely, optimal over-all properties such as dielectric, breakdown, mechanical and thermal features have been obtained in silica filled cured composite. High breakdown strength of ~48 MV m−1 and shock strength of ~9950 J m−2 have been achieved in silica loaded composite. This work might open up the way for large-scale fabrication of promising epoxy-based hybrid potting-adhesives.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3