Author:
Saei Jalal Niazi,Asadpour-Zeynali Karim
Abstract
AbstractIn the present study, ZnMnFeO4 and CoMnFeO4 tri-metallic spinel oxide nanoparticles (NPs) were provided using hydrothermal methods. The nanoparticles have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and electrochemical techniques. A reliable and reproducible electrochemical sensor based on ZnMnFeO4/CoMnFeO4/FTO was fabricated for rapid detection and highly sensitive determination of hydrazine by the DPV technique. It is observed that the modified electrode causes a sharp growth in the oxidation peak current and a decrease in the potential for oxidation, contrary to the bare electrode. The cyclic voltammetry technique showed that there is high electrocatalytic activity and excellent sensitivity in the suggested sensor for hydrazine oxidation. Under optimal experimental conditions, the DPV method was used for constructing the calibration curve, and a linear range of 1.23 × 10−6 M to 1.8 × 10−4 M with a limit of detection of 0.82 ± 0.09 μM was obtained. The obtained results indicate that ZnMnFeO4/CoMnFeO4/FTO nano sensors exhibit pleasant stability, reproducibility, and repeatability in hydrazine measurements. In addition, the suggested sensor was efficiently employed to ascertain the hydrazine in diverse samples of cigarette tobacco.
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献