Pin penetration depths in the neurocranium using a three-pin head fixation device

Author:

Machts René,Schindler Martina,Unterhauser-Chwastek Heike,Mertens Jan,Faust Katharina

Abstract

AbstractIn estimated 10–15% of neurosurgical interventions employing a conventional three-pin head fixation device (HFD) the patient’s head loses position due to slippage. At present no scientifically based stability criterion exists to potentially prevent the intraoperative loss of head position or skull fractures. Here, data on the skull penetration depth both on the single and two-pin side of a three-pin HFD are presented, providing scientific evidence for a stability criterion for the invasive three-pin head fixation. Eight fresh, chemically untreated human cadaveric heads were sequentially pinned 90 times in total in a noncommercially calibrated clamp screw applying a predefined force of 270 N (approximately 60 lbf) throughout. Three head positions were pinned each in standardized manner for the following approaches: prone, middle fossa, pterional. Titanium-aluminum alloy pins were used, varying the pin-cone angle on the single-pin side from 36° to 55° and on the two-pin side from 25° to 36°. The bone-penetration depths were directly measured by a dial gauge on neurocranium. The penetration depths on the single-pin side ranged from 0.00 mm (i.e., no penetration) to 6.17 mm. The penetration depths on the two-pin side ranged from 0.00 mm (no penetration) to 4.48 mm. We measured a significantly higher penetration depth for the anterior pin in comparison to the posterior pin on the two-pin side in prone position. One pin configuration (50°/25°) resulted in a quasi-homogenous pin depth distribution between the single- and the two-pin side. Emanating from the physical principle that pin depths behave proportionate to pin pressure distribution, a quasi-homogenous pin penetration depth may result in higher resilience against external shear forces or torque, thus reducing potential complications such as slippage and depressed skull fractures. The authors propose that the pin configuration of 50°/25° may be superior to the currently used uniform pin-cone angle distribution in common clinical practice (36°/36°). However, future research may identify additional influencing factors to improve head fixation stability.

Funder

German Federal Ministry of Education and Research

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3