Optical property dataset of inorganic phosphor

Author:

Jang Seunghun,Na Gyoung S.,Choi Yunhee,Chang Hyunju

Abstract

AbstractDeveloping inorganic phosphor with desired properties for light-emitting diode application has traditionally relied on time-consuming and labor-intensive material development processes. Moreover, the results of material development research depend significantly on individual researchers’ intuition and experience. Thus, to improve the efficiency and reliability of materials discovery, machine learning has been widely applied to various materials science applications in recent years. However, the prediction capabilities of machine learning methods fundamentally depend on the quality of the training datasets. In this work, we constructed a high-quality and reliable dataset that contains experimentally validated inorganic phosphors and their optical properties, sourced from the literature on inorganic phosphors. Our dataset includes 3952 combinations of 21 dopant elements in 2238 host materials from 553 articles. The dataset provides material information, optical properties, measurement conditions for inorganic phosphors, and meta-information. Among the preliminary machine learning results, the essential properties of inorganic phosphors, such as maximum Photoluminescence (PL) emission wavelength and PL decay time, show overall satisfactory prediction performance with coefficient of determination ($$R^2$$ R 2 ) scores of 0.7 or more. We also confirmed that the measurement conditions significantly improved prediction performance.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3