Complexity synchronization: a measure of interaction between the brain, heart and lungs

Author:

Mahmoodi Korosh,Kerick Scott E.,Grigolini Paolo,Franaszczuk Piotr J.,West Bruce J.

Abstract

AbstractHerein we address the measurable consequences of the network effect (NE) on time series generated by different parts of the brain, heart, and lung organ-networks (ONs), which are directly related to their inter-network and intra-network interactions. Moreover, these same physiologic ONs have been shown to generate crucial event (CE) time series, and herein are shown, using modified diffusion entropy analysis (MDEA) to have scaling indices with quasiperiodic changes in complexity, as measured by scaling indices, over time. Such time series are generated by different parts of the brain, heart, and lung ONs, and the results do not depend on the underlying coherence properties of the associated time series but demonstrate a generalized synchronization of complexity. This high-order synchrony among the scaling indices of EEG (brain), ECG (heart), and respiratory time series is governed by the quantitative interdependence of the multifractal behavior of the various physiological ONs’ dynamics. This consequence of the NE opens the door for an entirely general characterization of the dynamics of complex networks in terms of complexity synchronization (CS) independently of the scientific, engineering, or technological context. CS is truly a transdisciplinary effect.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifractal organization of EEG signals in multiple sclerosis;Biomedical Signal Processing and Control;2024-05

2. Complexity Synchronization of Organ Networks;Entropy;2023-09-28

3. Fractal Calculus for CERTs;SpringerBriefs in Bioengineering;2023

4. Fractal Paradigm;SpringerBriefs in Bioengineering;2023

5. Empirical CERTs;SpringerBriefs in Bioengineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3