Innovative dead-time correction and background subtraction for neutron multiplicity measurements using neural networks

Author:

Garcia-Duarte Jeremias,Mishnayot Yonatan,Tamashiro Aaron S.,Lawrence Jackson R.,Harke Jason T.

Abstract

AbstractThe number of neutrons emitted from a nuclear reaction plays a crucial role in various fields, including nuclear theory, nuclear nonproliferation, nuclear energy and nuclear criticality safety. Accurate determination of neutron multiplicities requires the application of several corrections, with dead-time correction and background subtraction being particularly significant. These corrections become more challenging for neutron detectors with time-dependent neutron capture. In this work, we perform a comprehensive study of three existing methods used for dead-time correction and background subtraction in neutron detectors with time-dependent neutron capture. The methods were tested for dead-times in the range from 0 to 1 μs using a Monte Carlo model simulating the dead-time and background effects in the standard neutron multiplicity probability distribution of $$^{252}$$ 252 Cf. The previous methods showed larger than desired uncertainty or systematic trade off. Those uncertainties prompted the development of a novel approach using neural networks trained with data from Monte Carlo simulations. The Neural Network method enabled the correction of neutron multiplicity probabilities more accurately than the other methods with fractional errors smaller than 3% for multiplicities around the peak of $$^{252}$$ 252 Cf. A similar approach using neural networks could be applied to problems where the system being studied can be accurately simulated without having an accurate analytical description available. The neural network method presented in this paper can be easily expanded if multiplicities greater than 10 are expected.

Funder

Lawrence Livermore National Laboratory

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3