Microwave assisted synthesis of Mn3O4 nanograins intercalated into reduced graphene oxide layers as cathode material for alternative clean power generation energy device

Author:

Shahid Mehmood,Katugampalage Thilina Rajeendre,Khalid Mohammad,Ahmed Waqar,Kaewsaneha Chariya,Sreearunothai Paiboon,Opaprakasit Pakorn

Abstract

AbstractMn3O4 nanograins incorporated into reduced graphene oxide as a nanocomposite electrocatalyst have been synthesized via one-step, facile, and single-pot microwave-assisted hydrothermal technique. The nanocomposites were employed as cathode material of fuel cells for oxygen reduction reaction (ORR). The synthesized product was thoroughly studied by using important characterization, such as XRD for the structure analysis and FESEM and TEM analyses to assess the morphological structures of the material. Raman spectra were employed to study the GO, rGO bands and formation of Mn3O4@rGO nanocomposite. FTIR and UV–Vis spectroscopic analysis were used to verify the effective synthesis of the desired electrocatalyst. The Mn3O4@rGO-10% nanocomposite with 10 wt% of graphene oxide was used to alter the shiny surface of the working electrode and applied for ORR in O2 purged 0.5 M KOH electrolyte solution. The Mn3O4@rGO-10% nanocomposite electrocatalyst exhibited outstanding performance with an improved current of − 0.738 mA/cm2 and shifted overpotential values of − 0.345 V when compared to other controlled electrodes, including the conventionally used Pt/C catalyst generally used for ORR activity. The tolerance of Mn3O4@rGO-10% nanocomposite was tested by injecting a higher concentration of methanol, i.e., 0.5 M, and found unsusceptible by methanol crossover. The stability test of the synthesized electrocatalyst after 3000 s was also considered, and it demonstrated excellent current retention of 98% compared to commercially available Pt/C electrocatalyst. The synthesized nanocomposite material could be regarded as an effective and Pt-free electrocatalyst for practical ORR that meets the requirement of low cost, facile fabrication, and adequate stability.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3