Abstract
AbstractFloating treatment wetlands (FTWs) are a sustainable solution to treat polluted water, but their role in chromium (Cr(III)) removal under neutral pH conditions remains poorly understood. This study evaluated the potential of FTWs planted with two perennial emergent macrophytes, Phragmites australis and Iris pseudacorus, to remove Cr(III) and nutrients (N and PO4-P) from water containing 7.5 mg/L TN, 1.8 mg/L PO4-P, and Cr(III) (500, 1000, and 2000 µg/L). Within 1 h of exposure, up to 96–99% of Cr was removed from the solution, indicating rapid precipitation. After 50 days, Phragmites bound 9–19% of added Cr, while Iris bound 5–22%. Both species accumulated Cr primarily in the roots (BCF > 1). Biomass production and growth development were inhibited in Cr treatments, but microscopic examination of plant roots revealed no histological changes at 500 and 1000 µg/L Cr, suggesting high resistance of the tested species. At 2000 µg/L Cr, both species exhibited disruptions in the arrangement of vessel elements in the stele and increased aerenchyma spaces in Phragmites. At the end of the experiment, 70–86% of TN and 54–90% of PO4-P were removed.
Funder
Narodowe Centrum Nauki, Poland
Niemi Foundation
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献