Mixed convection flow of an electrically conducting viscoelastic fluid past a vertical nonlinearly stretching sheet

Author:

Jafar Ahmad Banji,Shafie Sharidan,Ullah Imran,Safdar Rabia,Jamshed Wasim,Pasha Amjad Ali,Rahman Mustafa Mutiur,Hussain Syed M.,Rehman Aysha,El Din El Sayed M. Tag,Eid Mohamed R.

Abstract

AbstractThe study of hydromagnetic mixed convection flow of viscoelastic fluid caused by a vertical stretched surface is presented in this paper. According to this theory, the stretching velocity varies as a power function of the displacement from the slot. The conservation of energy equation includes thermal radiation and viscous dissipation to support the mechanical operations of the heat transfer mechanism. Through the use of an adequate and sufficient similarity transformation for a nonlinearly stretching sheet, the boundary layer equations governing the flow issue are converted into a set of ordinary differential equations. The Keller box technique is then used to numerically solve the altered equations. To comprehend the physical circumstances of stretching sheets for variations of the governing parameters, numerical simulations are made. The influence and characteristic behaviours of physical parameters were portrayed graphically for the velocity field and temperature distributions. The research shows that the impact of the applied magnetic parameter is to improve the distribution of the viscoelastic fluid temperature and reduce the temperature gradient at the border. Temperature distribution and the associated thermal layer are shown to have improved because of radiative and viscous dissipation characteristics. Radiation causes additional heat to be produced in liquid, raising the fluid's temperature. It was also found that higher velocities are noticed in viscoelastic fluid as compared with Newtonian fluid (i.e., when K = 0).

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3