Genetic mapping of quantitative trait loci associated with drought tolerance in chickpea (Cicer arietinum L.)

Author:

Yadava Yashwant K.,Chaudhary Pooja,Yadav Sheel,Rizvi Aqeel Hasan,Kumar Tapan,Srivastava Rachna,Soren K. R.,Bharadwaj C.,Srinivasan R.,Singh N. K.,Jain P. K.ORCID

Abstract

AbstractElucidation of the genetic basis of drought tolerance is vital for genomics-assisted breeding of drought tolerant crop varieties. Here, we used genotyping-by-sequencing (GBS) to identify single nucleotide polymorphisms (SNPs) in recombinant inbred lines (RILs) derived from a cross between a drought tolerant chickpea variety, Pusa 362 and a drought sensitive variety, SBD 377. The GBS identified a total of 35,502 SNPs and subsequent filtering of these resulted in 3237 high-quality SNPs included in the eight linkage groups. Fifty-one percent of these SNPs were located in the genic regions distributed throughout the genome. The high density linkage map has total map length of 1069 cm with an average marker interval of 0.33 cm. The linkage map was used to identify 9 robust and consistent QTLs for four drought related traits viz. membrane stability index, relative water content, seed weight and yield under drought, with percent variance explained within the range of 6.29%–90.68% and LOD scores of 2.64 to 6.38, which were located on five of the eight linkage groups. A genomic region on LG 7 harbors quantitative trait loci (QTLs) explaining > 90% phenotypic variance for membrane stability index, and > 10% PVE for yield. This study also provides the first report of major QTLs for physiological traits such as membrane stability index and relative water content for drought stress in chickpea. A total of 369 putative candidate genes were identified in the 6.6 Mb genomic region spanning these QTLs. In-silico expression profiling based on the available transcriptome data revealed that 326 of these genes were differentially expressed under drought stress. KEGG analysis resulted in reduction of candidate genes from 369 to 99, revealing enrichment in various signaling pathways. Haplotype analysis confirmed 5 QTLs among the initially identified 9 QTLs. Two QTLs, qRWC1.1 and qYLD7.1, were chosen based on high SNP density. Candidate gene-based analysis revealed distinct haplotypes in qYLD7.1 associated with significant phenotypic differences, potentially linked to pathways for secondary metabolite biosynthesis. These identified candidate genes bolster defenses through flavonoids and phenylalanine-derived compounds, aiding UV protection, pathogen resistance, and plant structure.The study provides novel genomic regions and candidate genes which can be utilized in genomics-assisted breeding of superior drought tolerant chickpea cultivars.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3