Fungal diversity and community structure from coastal and barrier island beaches in the United States Gulf of Mexico

Author:

Walker Allison K.,Robicheau Brent M.

Abstract

AbstractFungi are an important and understudied component of coastal biomes including sand beaches. Basic biogeographic diversity data are lacking for marine fungi in most parts of the world, despite their important role in decomposition. We examined intertidal fungal communities at several United States (US) Gulf of Mexico sand beach sites using morphology and ITS rDNA terminal restriction fragment length polymorphism (T-RFLP) analyses. Fungal biogeographical patterns from sand beach detritus (wood, emergent plant [mangrove/ saltmarsh], or marine [algae, seagrass]) from Florida, Mississippi, and Texas were investigated using diversity indices and multivariate analyses. Fungal diversity increased with decreasing latitude at our study sites. Substrate type strongly influenced fungal community structure in this region, with different fungal communities on detrital marine versus emergent substrates, as well as detrital marine versus wood substrates. Thirty-five fungi were identified morphologically, including new regional and host records. Of these, 86% were unique to an individual collection (i.e., sampled once from one site). Rarefaction curves from pooled morphological data from all sites estimate the number of samples required to characterize the mycota of each substrate. As sampling occurred before the Deepwater Horizon oil spill (April-2010), our findings contribute pre-oil spill sand beach biodiversity data and marine fungal distribution trends within this economically important oceanographic region.

Funder

University of Southern Mississippi

Natural Sciences and Engineering Research Council of Canada

Mycological Society of America

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3