Preliminary evaluation of deep learning for first-line diagnostic prediction of tumor mutational status

Author:

Morel Louis-Oscar,Derangère Valentin,Arnould Laurent,Ladoire Sylvain,Vinçon Nathan

Abstract

AbstractThe detection of tumour gene mutations by DNA or RNA sequencing is crucial for the prescription of effective targeted therapies. Recent developments showed promising results for tumoral mutational status prediction using new deep learning based methods on histopathological images. However, it is still unknown whether these methods can be useful aside from sequencing methods for efficient population diagnosis. In this retrospective study, we use a standard prediction pipeline based on a convolutional neural network for the detection of cancer driver genomic alterations in The Cancer Genome Atlas (TCGA) breast (BRCA, n = 719), lung (LUAD, n = 541) and colon (COAD, n = 459) cancer datasets. We propose 3 diagnostic strategies using deep learning methods as first-line diagnostic tools. Focusing on cancer driver genes such as KRAS, EGFR or TP53, we show that these methods help reduce DNA sequencing by up to 49.9% with a high sensitivity (95%). In a context of limited resources, these methods increase sensitivity up to 69.8% at a 30% capacity of DNA sequencing tests, up to 85.1% at a 50% capacity, and up to 91.8% at a 70% capacity. These methods can also be used to prioritize patients with a positive predictive value up to 90.6% in the 10% patient most at risk of being mutated. Limitations of this study include the lack of external validation on non-TCGA data, dependence on prevalence of mutations in datasets, and use of a standard DL method on a limited dataset. Future studies using state-of-the-art methods and larger datasets are needed for better evaluation and clinical implementation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3