Research on prediction model of converter temperature and carbon content based on spectral feature extraction

Author:

Zhao Bo,Zhao Jinxuan,Wu Wei,Zhang Fei,Yao Tonglu

Abstract

AbstractThe flame of converter mouth can well reflect the change of temperature and composition of molten steel in the furnace. The flame characteristics of converter mouth collected by device can well predict the smelting process of converter. Based on the flame spectrum data set of converter mouth, this paper uses the BEADS algorithm and rough set attribute reduction algorithm optimized by genetic algorithm to extract the features of 2048-dimensional wavelength data. Through the model, eight indexes that contribute greatly to temperature and carbon content are selected, which aref-507,f-520,f-839,f-1073,f-1371,f-1528,f-1727 andf-1826. The MIC coefficients of the eight indicators with temperature and carbon content are calculated, and the MIC coefficients of the variables is small, and the selected indicators are representative. There was a significant correlation between temperature and C content. In BP neural network of temperature prediction model, it is found that the prediction accuracy of the training set is 0.99, the prediction accuracy of the test set is 0.99, the prediction accuracy of the verification set is 0.99, and the prediction accuracy of the whole set is 0.99. Through statistics, it is found that the hit rate of the temperature model in the range of ± 5 K is 88.7%, and the hit rate in the range of ± 10 K is 98.4%. and theRMSEparameter analysis shows that the average prediction error is 3.85 K. In BP neural network of carbon content prediction model, it is found that the prediction accuracy of the training set is 0.99, the prediction accuracy of the test set is 0.99, the prediction accuracy of the verification set is 0.98, and the prediction accuracy of the whole set is 0.99. Through statistics, it is found that the hit rate of the carbon contents model in the range of ± 0.05% is 94.0%, and the hit rate in the range of ± 0.10% is 98.3%, and theRMSEparameter analysis shows that the average prediction error is 0.021%. Finally, the universality of the model is verified by MIV algorithm.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3