FRET analysis of the temperature-induced structural changes in human TRPV3

Author:

Kim Jinyoung,Won Jongdae,Chung Dong Kyu,Lee Hyung Ho

Abstract

AbstractTransient receptor potential vanilloid member 3 (TRPV3) is an ion channel that plays a critical role in temperature sensing in skin. There have been active studies on how TRPV3, which is also known as one of the temperature-sensitive transient receptor potential (thermoTRP) channels, responds to temperature. However, the previous studies were mostly based on TRPV3 originating from mice or rats. Here, we focus on human TRPV3 (hTRPV3) and show that which domain of hTRPV3 undergoes conformational changes as temperature increases by Förster resonance energy transfer (FRET) assay. During the heat-induced activation of hTRPV3, the linker domain close to C-terminus, that is, the C-terminal domain shows a largest structural change whereas there is little change in the ankyrin repeat domain (ARD). Interestingly, the activation of hTRPV3 by an agonist shows structural change patterns that are completely different from those observed during activation by heat; we observe structural changes in ARD and S2–S3 linker after ligand stimulation whereas relatively little change is observed when stimulated by heat. Our results provide insight into the thermal activation of hTRPV3 channel.

Funder

Samsung Science and Technology Foundation

National Research Foundation, Korea

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3