Droplet microfluidics-based high-throughput bacterial cultivation for validation of taxon pairs in microbial co-occurrence networks

Author:

Jiang Min-Zhi,Zhu Hai-Zhen,Zhou Nan,Liu Chang,Jiang Cheng-Ying,Wang Yulin,Liu Shuang-Jiang

Abstract

AbstractCo-occurrence networks inferred from the abundance data of microbial communities are widely applied to predict microbial interactions. However, the high workloads of bacterial isolation and the complexity of the networks themselves constrained experimental demonstrations of the predicted microbial associations and interactions. Here, we integrate droplet microfluidics and bar-coding logistics for high-throughput bacterial isolation and cultivation from environmental samples, and experimentally investigate the relationships between taxon pairs inferred from microbial co-occurrence networks. We collected Potamogeton perfoliatus plants (including roots) and associated sediments from Beijing Olympic Park wetland. Droplets of series diluted homogenates of wetland samples were inoculated into 126 96-well plates containing R2A and TSB media. After 10 days of cultivation, 65 plates with > 30% wells showed microbial growth were selected for the inference of microbial co-occurrence networks. We cultivated 129 bacterial isolates belonging to 15 species that could represent the zero-level OTUs (Zotus) in the inferred co-occurrence networks. The co-cultivations of bacterial isolates corresponding to the prevalent Zotus pairs in networks were performed on agar plates and in broth. Results suggested that positively associated Zotu pairs in the co-occurrence network implied complicated relations including neutralism, competition, and mutualism, depending on bacterial isolate combination and cultivation time.

Funder

NSFC-EU Environmental Biotechnology joint program

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3