Author:
Kenny Gavin G.,Pasek Matthew A.
Abstract
AbstractHypervelocity impacts can produce features in zircon that are not normally produced by endogenic processes. However, lightning can also induce extreme pressure–temperature excursions, and its effect on zircon has not been studied. With the aim to recognise features that form in response to extreme pressure–temperature excursions but are not unique to hypervelocity impacts, we imaged and undertook microstructural characterization of zircon in a fulgurite (a tubular body of glass and fused clasts that formed in response to a lightning strike). We document zircon with granular ZrO2 and rims of vermicular ZrO2, features which vary in abundance with increasing distance from the fulgurite’s central void. This indicates that these features formed in response to the lightning strike. Zircon dissociation to ZrO2 and SiO2 is a high-temperature, relatively low-pressure phenomenon, consistent with previous suggestions that lightning strikes involve extreme temperatures as well as pressures greater than those usually generated in Earth’s crust but rarely > 10 GPa. The rims of monoclinic ZrO2 record crystallographic evidence for precursor cubic ZrO2, demonstrating that cubic ZrO2 is not unique to hypervelocity impacts. Given the likelihood that this fulgurite experienced pressures of, at most, a few GPa, evidence for cubic ZrO2 indicates peak temperatures > 2000 °C.
Funder
H2020 Marie Skłodowska-Curie Actions
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. French, B. M. & Koeberl, C. The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Sci. Rev. 98, 123–170 (2010).
2. Timms, N. E. et al. A pressure-temperature phase diagram for zircon at extreme conditions. Earth-Sci. Rev. 165, 185–202 (2017).
3. Pasek, M. A., Block, K. & Pasek, V. Fulgurite morphology: A classification scheme and clues to formation. Contrib. Mineral. Petrol. 164, 477–492 (2012).
4. Essene, E. J. & Fisher, D. C. Lightning strike fusion: Extreme reduction and metal-silicate liquid immiscibility. Science 234, 189–193 (1986).
5. Morozova, I., Shieh, S. R., Moser, D., Barker, I. R. & Hanchar, J. M. In Microstructural Geochronology: Planetary Records Down to Atom Scale, 232 (eds Moser, D. E. et al.) 167–182 (American Geophysical Union Geophysical Monograph, Washington, 2018).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献