Nomogram to determine predictive risk for active tuberculosis based on the QuantiFERON-TB Gold In-Tube test

Author:

Wang Qiang,Zhu Fengdan,Cai Yanjuan,Zhu Tao,Lu Xiaolan

Abstract

AbstractInterferon-γ release assay (IGRA) is a widely used blood test for detecting TB infection. However, a positive result of IGRA cannot differentiate active tuberculosis (ATB) infection from inactive tuberculosis (IATB). In this study, we established a nomogram model for predictive risk of ATB, differentiated from IATB, based on the concentration of interferon-γ (IFN-γ) of QuantiFERON-TB Gold In-Tube Test (QFT-GIT) and clinical characteristics. Participants with a positive QFT-GIT result were recruited and divided into a training and validation cohort according to hospitalisation date. The nomogram model for the differential diagnosis of ATB from IATB was established according to gender, age, pleural effusion (PE), and the concentration of IFN-γ in the Nil, TB antigen, and mitogen tube of QFT-GIT in the training cohort by logistic regression and validated in the validation cohort, and then combined with adenosine deaminase (ADA) to evaluated the performance value in ATB cases with PE. The area under receiver operating characteristic curve (AUC) of the diagnostic nomogram model, which we called the NSMC-ATB model for ATB diagnosis was 0.819 (95% CI 0.797–0.841), with sensitivity 73.16% and specificity 75.95% in training cohort, and AUC was 0.785 (95% CI 0.744–0.827), with sensitivity 67.44% and specificity 75.14% in validation cohort. A combination of the NSMC-ATB model and ADA performed better than the NSMC-ATB model and ADA alone in predicting ATB cases with PE, as AUC was 0.903 (95% CI 0.856–0.950) with sensitivity 78.63% and specificity 87.50%. We established an effective diagnostic nomogram model, called the NSMC-ATB model to differentiate ATB from IATB. Meanwhile, the combination of the NSMC-ATB model and ADA improved the performance value of ATB with PE.

Funder

Primary Health Development Research Center of Sichuan Province Program

Science and Technology Project of Nanchong

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3