Macroscopic fracture mechanism of coal body and evolution characteristics analysis of impact force in deep coal and gas outburst

Author:

Ren Lingran,Tang Jupeng,Pan Yishan,Zhang Xin,Yu Honghao

Abstract

AbstractWith the increase of mining depth and intensity, coal and gas outburst dynamic disasters occur frequently. In order to deeply study the macroscopic fracture mechanism of coal body and evolution characteristics analysis of impact force, taking the outburst coal seam of Pingmei No. 11 Coal Mine and Sunjiawan coal seam of Hengda Coal Mine as the research objects, the simulation roadway test system of self-developed true triaxial coal and gas outburst is applied to carry out the simulation test of deep coal and gas outburst with buried depths of 1000 m, 1200 m, 1400 m and 1600 m. During the test, the overlying strata stress is simulated by axial compression, the surrounding rock stress is simulated by confining pressure, the gas pressure is simulated by pore pressure, the impact force and acoustic emission monitoring technology are introduced, and the coal seam gas pressure is simulated by mixture pressure of 45% CO2 and 55% N2. From the viewpoint of fracture mechanics, the crack propagation mechanism of coal in the outburst launching area is discussed, the evolution characteristics of impact force and gas pressure are analyzed, and the influence law between acoustic emission signal and impact force is revealed. From the viewpoint of energy conversion, the transformation character of gas internal energy to impact kinetic energy (gas pressure to impact force) are analyzed. The results show that the generation of I-type crack is a prerequisite for outburst catastrophe. With the crack propagation, I-type and II-type cracks intersect and penetrate, resulting in internal structural damage and skeleton instability of coal. Gas wrapped fragmentized coal body thrown, outburst occurs. There is obvious negative pressure in the roadway after outburst. The occurrence of negative pressure is greatly affected by the physical and mechanical properties of coal, ground stress and gas pressure. Impact kinetic energy is mainly provided by gas internal energy. Part of the gas pressure is converted into impact force. The strength and duration of the impact force are determined by the gas pressure. Under the condition of deep working conditions (high ground stress and low gas pressure), the propagation of impact force in the roadway is more hindered. Both impact force and acoustic emission signals can monitor the occurrence of outburst. The peak point of acoustic emission ringing count is earlier than the impact force. The acoustic emission signal can monitor the outburst hazard earlier. The impact force can more specifically reflect the coal fracture.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference66 articles.

1. Wei, W. et al. Evaluating the coal rebound effect in energy intensive industries of China. Energy 207, 118247 (2020).

2. Yuan, L. Strategies of high efficiency recovery and energy saving for coal resources in China. J. China Univ. Min. Technol. Soc. Sci. 20, 3–12 (2018).

3. Yuan, L. Research progress of mining response and disaster prevention and control in deep coal mines. J. China Coal Soc. 46, 716–725 (2021).

4. Xie, H. Research review of the state key research development program of China: Deep rock mechanics and mining theory. J. China Coal Soc. 44, 1283–1305 (2019).

5. Zhang, J., Li, Q., Zhang, Y. & Wang, X. Definition of deep coal mining and response analysis. J. China Coal Soc. 44, 1314–1325 (2019).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3