Connecting complex networks to nonadditive entropies

Author:

de Oliveira R. M.,Brito Samuraí,da Silva L. R.,Tsallis Constantino

Abstract

AbstractBoltzmann–Gibbs statistical mechanics applies satisfactorily to a plethora of systems. It fails however for complex systems generically involving nonlocal space–time entanglement. Its generalization based on nonadditive q-entropies adequately handles a wide class of such systems. We show here that scale-invariant networks belong to this class. We numerically study a d-dimensional geographically located network with weighted links and exhibit its ‘energy’ distribution per site at its quasi-stationary state. Our results strongly suggest a correspondence between the random geometric problem and a class of thermal problems within the generalised thermostatistics. The Boltzmann–Gibbs exponential factor is generically substituted by its q-generalisation, and is recovered in the $$q=1$$ q = 1 limit when the nonlocal effects fade away. The present connection should cross-fertilise experiments in both research areas.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When may a system be referred to as complex?—an entropic perspective;Frontiers in Complex Systems;2023-11-06

2. Non-additive entropies and statistical mechanics at the edge of chaos: a bridge between natural and social sciences;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-08-14

3. Nonadditive generalization of the Gentile statistics;Low Temperature Physics;2023-08-01

4. Nonextensive Footprints in Dissipative and Conservative Dynamical Systems;Symmetry;2023-02-07

5. Statistical mechanical approach of complex networks with weighted links;Journal of Statistical Mechanics: Theory and Experiment;2022-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3